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Low Reynolds number flow of a variable property 
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The low Reynolds number flow of a variable property gas past an infinite heated 
circular cylinder is studied when the temperature difference between the cylinder 
and the free stream is appreciable. The velocity field (and hence the drag on the 
cylinder) is calculated by the method of matched asymptotic expansions. It is 
found that the zero-order velocity field calculated on the Stokes approximation 
satisfies both the no slip condition a t  the cylinder and the uniform stream con- 
dition at  infinity which is in strong contrast with the corresponding velocity 
field for incompressible slow flow past an unheated cylinder where the uniform 
stream condition at infinity cannot be satisfied. When the temperature of the 
cylinder is twice the temperature at  infinity it is found that the drag on the 
cylinder is almost twice the drag on a similar unheated cylinder. 

1. Introduction 
Recently there has been interest in the effects of variable gas properties on low 

Reynolds number flow phenomena. Thus Chang (1965)’ Kassoy, Adamson & 
Messiter (1966) and more recently Rimmer (1968) have, in theoretical analyses, 
considered the heated sphere in a slow uniform stream. Theoretical investigations 
of the slow flow of a gas past a heated circular cylinder have also been under- 
taken. Interest in this latter problem is increased because of the experimental 
use of the hot-wire anemometer which the theory describes. 

The heat transfer from a circular cylinder in a low Reynolds number flow was 
investigated theoretically by Cole & Roshko (1954) who calculated the zero- 
order temperature field (and hence the Nusselt number) for a slightly heated 
cylinder. Later work by Kassoy (1967)’ who also included slip flow effects in his 
solution, produced the first- and second-order corrections to the Cole & Roshko 
solution. More recent work by Wood (1968) and Hieber & Gebhart (1968) 
essentially confirmed Kassoy ’s findings, although Hieber & Gebhart included the 
case of large Prandtl number in their analysis. In  all the other work the Prandtl 
number is taken to be of order one. In the context of the above-mentioned papers, 
low Reynolds numbers mean Reynolds numbers tending to zero. A numerical 
analysis of the heat transfer from a slightly heated circular cylinder was under- 
taken by Dennis, Hudson & Smith (1968) for a range of Reynolds numbers from 
0.01 to 40. Comparison of these results with those of Kassoy (1967) showed 
satisfactory agreement for Reynolds numbers less than 0-5. 
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The author (Hodnett 1968) calculated the velocity field and hence the drag 
on the cylinder for this problem of slow flow past a heated circular cylinder when 
the heating factor is small compared to one (we call the non-dimensionalized 
temperature difference between the cylinder and free stream the heating factor). 
In  the same paper the velocity field when the heating factor is of order one was 
obtained when allowing the proper density variation but assuming that the 
thermal conductivity and viscosity are constant. We here give the correct 
velocity field (and drag) when the heating factor is order one and when the 
density, thermal conductivity and viscosity are all allowed their proper variation. 

We are therefore considering the flow at low Reynolds numbers (Re -+ 0) of 
a gas past an infinite heated circular cylinder when the axis of the cylinder is 
perpendicular to the plane of flow. The temperature difference between the 
cylinder and the free stream is significant. Attention is confined to the con- 
tinuum rdgime (i.e. MJR, - K ,  -+ 0). Here, M, is the Mach number evaluated at  
infinity and K ,  is the Knudsen number. The viscosity and thermal conductivity 
are taken to vary as (TI)" where T' is the temperature and m is non-negative. 
The solution is derived by the method of matched asymptotic expansions pre- 
viously applied by Kaplun (1957) and Proudman & Pearson (1957) to the flow 
of a low Reynolds number incompressible fluid past a circular cylinder. To facili- 
tate the analysis the gas is taken to be perfect with constant specific heats (e.g. 
any monatomic gas). 

2. Equations 
Let dashed quantities denote physical variables; these are non-dimensionalized 

with respect to their free stream values, so that p = p'lp;, p = p'/j&, K = K / K k ,  
q = q'/U&, T = T'/TL, T = r'/r;, where p' is the density, q' the velocity, U k  the 
speed of the free stream, r' the distance from the centre point of the cylinder 
whose radius is rh, and the subscript co denotes the value of a variable at  infinity. 
The pressure p' is non-dimensionalized in two ways as follows: 

so that p = Rep,  where Re = r ip2  UZipL is the Reynolds number. 

which will be referred to as the Stokes or inner region, are 
The appropriate non-dimensionalized equations for the region near the body, 

div(pq) = 0, (1) 

Re p(JVq2 - q x curl q) = - V p  + $V(p div q) 

+V(q .Vp) -qV2p+Vp x curlq- (divq)Vp-curlcurlpq, (2) 

(3) Re p(q . V) T = P,-ldiv (KVT) + (yl  - 1) 1M2,&5 + q . Vp), 

while the equation of state is 
I M"m 

Re 
y - p + l  = p T ,  (4) 
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where P, = p ~ C , / K ~  is the Prandtl number with C, the specific heat at  constant 
pressure, Mw = U;/a; is the value of the Mach number at  infinity where a‘ is the 
sound speed defined for a perfect gas by (a’)2 = y’p’/p’ with y’ the ratio of the 
specific heats; q5 is the dissipation function given by 

$ = V2(q. q) + 2V. (curl q x q) - 2q.  V(div q) + (curl q .  curl q) - g(div q)2. 

In  the operators appearing in (1)-(4) the Stokes variable r is used. Denoting the 
temperature of the surface of the cylinder by TL, we restrict (TL - TL)/TL to 
be at  most order one, which means that the buoyancy force ignored in writing (2) 
is negligible provided that grJV2 is a t  most order one (on comparison of the 
buoyancy and viscous forces in the momentum equation), where g is the gravita- 
tional acceleration. Alternatively, buoyancy effects are negligible when the 
Grashof number, G,, satisfies Gr < Re (as Re -+ 0). 

The appropriate non-dimensionalized equations governing the flow far from 
the cylinder which will be referred to as the Oseen or outer region are found from 
(1)-(4) by defining a new non-dimensional length s = R,r and using the Oseen 
non-dimensional form of the pressure, i.e. P = (p’ -pL)/pL 6’2 so that the Oseen 
equations are 

div(pq) = 0, (5) 

p(iVq2-q x curlq) = -VP+$V(pdivq)+V(q.Vp)-qV2p+Vpx curlq 

- (div q) V p  - curl curlpq, (6) 

p(q. V )  T = PFldiv ( K V T )  + (7’- 1) XL(p@ +q.VP) ,  (7) 

and y‘M:P+ 1 = pT, (8) 

where 9 = R:@, 

and the operators in (5)-(8) are formed with the Oseen variable s. 

3. Construction of solution and boundary conditions 
We will look for solutions of (1)-(8) of the following form: 

Inner Outer 

n= 0 n=O 

m W 

P = C CnPn+O(Re). 
n=O 

03 W 

27 = C dntn+O(Re); T =  C DnTn+O(Re). 
n=O 12= 0 

The velocity q in the inner region will be defined by 

PQ = curl (+i*), 

where i, is the unit vector in the z direction and 

+ = 5 bn+n+O(Re), 
n= 0 

30-2 



468 P .  F .  Hodnett 

so that the continuity equation in this region is always satisfied identically, 
In  the outer region 00 

q = C Bn Q, + O(Re). 
n=O 

The coefficients of each of the variables, e.g. the coefficients an of p ,  are required 
to possess the property that a,+,/an -+ 0 for all n as Re, MJR, --f 0. In  addition, 
the inner and outer solutions for each variable are required to match asympto- 
tically for large r as Re -+ 0 or for small s. 

The first terms in the expansions for the outer variables are those appropriate 
to a uniform stream. Hence, on choosing A ,  = B, = C, = Do = 1, by definition, 
Ro = 1 ,  To = 1, Po = 0 and Q, = i,, where i, is the unit vector in the x direction. 

If TL/TL = A, the boundary conditions on the inner variables at the surface 
of the cylinder (i.e. r = 1) are T = A and q = 0. 

4. Solutions for the temperature and density 
The temperature field for this problem, valid to first order, is derived in 

Hodnett (1968) where it is shown that in the Stokes region (near cylinder) 

T = to - $ ( 4 m + l -  1 )  [In + r l h r / [ ( m  + 1 )  to"], ( 9 )  

where t?+l = 4 m + l -  ~(Am+l- 1) r ;  

the small parameter E is given by 8 = [In ( 1/Re)]-l and y is Euler's constant. 
Then Tm+l = Am+l- Sln r ,  where 

6 = e(Am+l- 1 )  ( 1  +€[In ($P,) + 71). (10) 

T = l+€(Am+'-1)Tl, ( 1 1 )  

In  the Oseen region (far from cylinder), 

where 

and KO is the modified Bessel function of the second kind of zero order. 
Since we assume M,/Re -+ 0 as Re -+ 0 and since the expansions for the pressures 

p and P are in powers of E it is seen from the equations of state ( 4 )  and (8) that, 
neglecting terms of order Re, pT = 1 

in both the Stokes and Oseen regions. 

Tl = (m+ l)-lexp (~P,scosO)K,(~P,s) 

(12) 

5. Solution for the velocity 
Since it will be shown that the expansion for the velocity q is in powers of E .  

the convection terms in the inner momentum equation (2) can always be neg- 
lected, being O(Re). 

As stated in Q 3 we let the inner continuity equation (1) be satisfied identically 

pq = curl ($iA by 

or, using (12), by q = T curl ($iz), (13) 
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1 ~ .  = bn$n +O(W 
n = O  
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where 

and T is given by (9). The zero-order approximation to the inner velocity field 
is then q, = b, T curl ($, i,). 

The outer boundary condition on q,, that q, - i, for large r as Re + 0, suggests 
$, should be of the form 

After taking the curl of ( 2 )  (with convection terms neglected), substitution of 
expressions (13), (14) and (10) in the resulting equation gives 

$, = Xo(r )  sin e. (14) 

where 
I d  1 

D = dr ( r  g) -?. 

The boundary conditions in terms of xo are 

xo = dXo/dr = 0 a t  r = 1 (16) 

and boxo N r for large r as Re + 0. (17 )  

The solutions of (15) for the limiting cases (i) m = 0 (corresponding to constant 
viscosity and thermal conductivity) and (ii) (Am+l - 1) = O(s) (corresponding to 
a slightly heated cylinder) are given in Hodnett (1968). The solution of (15) 
without any such restrictions is found as follows. 

Equation (15) can be rewritten 

On changing the independent variable from r to t = Tm+l/6 (cf. expression (lo)),  
equation (18) becomes 

($ + 1) (5 [$+ 21 [$- 11 + [$ + 31 [ - a d (t;ii) 'a + b ] )  x, = 0. (19) 

Since Tm+l is order one and 6 --z 0 as Re -+ 0, t --f co as Re -+ 0. We are then 
interested only in the asymptotic solution for large t of (19). The fourth-order 
ordinary differential equation ( 19) possesses four linearly independent solutions 
of which we need to be able to calculate only three provided they can satisfy the 
three boundary conditions (16) and (17). By inspection a solution of (19) is 

xg = LAe-t, (19a) 

where Lh is an arbitrary constant. Then the other three independent solutions 
of (19) are the three independent solutions of the third-order ordinary differential 
equation 

(5 [$ + 21 [$ - 11 + [$ + 31 [ - g (t $) + t ] )  x8 = 0, (20) 



470 P .  F.  Hodnett 

since, as can easily be verified, 
xo, of (19) is 

is not a solution of (20) .  Then the full solution, 

x o  = xo"+xob. 
However, we only need two independent solutions of (20) provided they can 

with solution (19a), satisfy the boundary conditions (16) and (17). We are also 
only interested in asymptotic solutions of (20) for large t .  A method of solution 
(for large t )  is indicated by observing that the second operator in the second 
term of the equation, i.e. 

[ -; (t $) + t ]  

is the operator in the modified Bessel equation of zero order whose asymptotic 
solution for large t has the form 

t-&[const. e t +  const. e-$1. 

This suggests looking for two asymptotic solutions, valid for large t ,  of the form 

jyt = etF(l)  + e-tG(t), 

and seeking a power series solution of the resulting equations for F ( t )  and G(t) .  
On following this procedure the equations for P(t) and G(t)  are 

(m+ ; (;+ 3) + [: + 41 [ - t g - (1 + 2q-- at 1 F = 0, a I) 
at a I) a2 

(m% ($+ 1) ($ - 2 )  + (5 + 2 )  [ - t dt2 - (1 - 2t )  - + 1 G = 0, 

whose solutions for large t are 

where MA is an arbitrary constant, 

fl = (5m+2)/16(m+ 1) and f2 = 3(43m2+46m+ 12)/[512(m+ 1)2], 

and G = Nit-d(m+l)[l +glt-1+g,t-2+O(t-3)],  

where iV; is an arbitrary constant, 

g, = -[8(m+1)2]-1 and g, = (2m+3)(4m2+6m+3)/[128(m+1)4]. 

When rewritten in terms of the original independent variable r the solution 
of (15) then is 

xo = Lo P + 1Mor-1T-4(m+l)[ 1 +fl ST-(m+l) +f2 62T-2(m+1) + O(83)] 

+ No r W [  1 + g ,  6T-(m+l) + g2 62T-2(m+l) + o(s3)1, ::- (21 

where T m + l =  Am+l- 61nr and Lo, 4, No are arbitrary constants. 
Applying the boundary conditions (16) to  (21) then gives 
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By equation (21) on using (23), 

for large r as Re -+ 0, so that boundary condition (17) is satisfied on choosing 
b, = 1, if Lo = 1/(1 -A$). (24) 

It is worth noting here that $, given by expressions (14) and (21)-(24) is not 
singular at the outer edge of the Stokes region and is therefore, a uniformly valid 
zero-order solution for the velocity field satisfying both the no-slip condition at 
the cylinder and the uniform stream condition at  infinity. This contrasts strongly 
with the corresponding incompressible problem of slow flow past an unheated 
circular cylinder when 9, needs to be multiplied by E to ensure proper behaviour 
of the velocity field at the outer edge of the Stokes region. This result was also 
noted in Hodnett (1968) for the case m = 0. 

The pressure po can now be calculated by integrating the momentum equation 
(2). 

As shown in Hodnett (1968) the expansion in the outer region for the tempera- 
ture T is given by ( l l ) ,  and the expansion for the density p in this region is 

where R, = -T,. 
The form of the first-order outer continuity and momentum equations can 

then be found when the outer expansion for the velocity q is known. The appro- 
priate form of the outer expansion for q becomes apparent when qo is expressed 
in terms of the Oseen variable s. Equation (13) gives 

/I = l+e(A"+l-l)R1, (25 1 

For large r as Re + 0, it is seen from (9) that 

T N 1 - e(Am+l - 1) (m + 1)-l un s +In (te) + 71 + O(e2),  (27) 

while from (14) and (21)-(24), 

(4m + 3) Am+'- (2m + 1) 
(4m + 1) Am+, + 

Equations (26)-(29) together indicate that the outer expansion for the velocity q 
should be of the form 

It is then apparent that the outer expansion for the pressure P should be 

q = i,+eQ, (i.e. B, = E ) .  (30) 

P = EP, (i.e. C, = 8 ) .  (31) 
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The first-order outer continuity equation by (30), (25) and (5) then is 

(32) 
divQ,-(Am+'-1)- 8Tl = 0, 

aQ1 ~- - -V(Pl-+divQl)-curlcurlQ,. 

8X 

while the first-order outer momentum equation by (31), (30), (25), (11) and (6) is 

(33) ax 

Since the energy equation (7) gives aTl/ax = P;lVaT1, then (32) becomes 

div [Q, - P;l(Ana+l - l)VT,] = 0, 

which is satisfied by putting 

Q1 = P;l(Arn+l - 1) VT, + curl (TliZ). (34) 

After taking the curl of (33), substitution of expression (34) in the resulting equa- 

[L + curl curl [curl curl ( ~ , i , ) l =  0,  
tion gives 

1 
where curl curl (Y1iz) = 

= X,(s, 8 )  i,. 

The equation 

(35) 

m 

n= 1 
has the solution X ,  = exp (4s cos 8 )  2 E,K,($s) sin no, 

which is bounded at  infinity. The En are arbitrary constants and the K ,  are 
modified Bessel functions of the second kind. The constants E, can be determined 
by the condition that 

R;l curl q, must asymptotically --f E curl Q1 for large r as Re --f 0. 

By using (26), (9), (14) and (21), for large r as Re-+ 0, 

A m f l -  1 

( m + l ) ( l - A & )  
R;l curl q, N e8-l sin 8 i,. 

By (34) and (35) 
OD 

E curl Q1 = sexp (3s cos 8) 2 EnK,(+s) sin nei,. 
n= 1 

For expression (37) to tend asymptotically to expression (36) for small s. 

E, = 0 for n 2 2. 

Am+,- 1 

= 2(m+ 1) (1 -A*)' while 

Equation (35) then becomes 

1' a 2  [ -5  (8 L) -3  s] Y, = Elexp (4s cos8)Kl(~s)  sin8, 

(36) 

(37) 
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where El is given by (38). Let 

Yl = Yl, + %,’ 

473 

where Y1, is tho complementary function and Y,, is the particular integral 
of (39). 

The particular integral of (39) is 

where $n = 2K1 In + K0(In+, + In-l), and In is the modified Bessel function of 
the first kind of order n. The second term, Q1, in the outer expansion for the 
velocity q is, on using (34), (40) and ( l l ) ,  

sin8exp(iP,scos8)Ko(&P,s) i,, (41) I Am+l- 1 
-~ 

2(m+ 1) 
where &(s) = d/ds($,). 

For small s $1(4s) ’ $2 ’ $3 * ‘ * Y  

$I(&) + is$;(&s) > $2 + is$; > $3 + is$; . . . while 

and $l(&s) c.’ -lns+[In4-y+1], 

while rjl(&s)+&s$;(&s) N -lns+[ln4-y]. (42) 

An inspection of (26)-(29) which give q, for large r as Re -+ 0 and use of (41) and 
(42) which give Q1 for small s, show that for the .first two terms in the outer 
expansion for the velocity 

to match qo for small s, 
i, + eQ1 

ay,, A*+I- 1 -+------- P;l (for small s), 
a0 m + l  

3‘ -+ o (for small s). (43) as 
and 

The condition that Q1 -+ 0 (as s -+ co) requires 

The complementary function, Ylc, of (39) satisfying boundary conditions (43) 
and (44) then is 

Y,, = (Am+l - 1)  P;l(m + l)-W. (45) 
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The form of the next term in the inner expansion for q is found by expanding 
for small s the first two terms, i,+EQ1, in the outer expansion for the velocity. 
For small s, wing (41), (45) and (42), 

') [ln s + In< - In 4 + y ]  
- 

x [-lns+ln4-y]+ 
2(m + I) 

where an inspection of expressions (26)-(29) which give qo for large r as Re + 0 
shows that the bold face terms in expression (46) already match terms in the 
expansion for q, (for large r as Re -+ 0). For the inner expansion for q to satisfy 
the asymptotic matching condition for large r as R, -+ 0 then requires, using 
expression (46), that 

$ = @ o + ~ $ l  (i.e. b, = E), 

where +I = X l ( 4  0, 

and as before pq = curl (@iJ. (47) 

After taking the curl of the momentum equation (2) (with the convection terms 
neglected), substitution of expressions (47), (12) and (10) in the resulting equation 
gives x1 satisfying the same differential equation as xo does, i.e. (15). The solution, 
x,, of this equation is given by expression (21) with x1 replacing xo and new 
arbitrary constants L,, M,, N, replacing Lo, M,, No. As previously, the boundary 
conditions at  the cylinder 

x1 = dXl/dr = 0 at r = 1, 

determine Ml and Nl in terms of Lp These relations are given by (22) and (23) 
with L,, M,, N, replacing Lo, M,, No. 

An inspection of expressions (46), (47) and (26)-(29) shows that the outer 
boundary on the inner expansion for q gives, after some reduction, 

A4[(4m + 3) Am+, - (2m + l)] 
4(m+ 1) Am+, 1, (48) 

1. (49) 

1 Am-1 - 1 
TX1 2(m+l)(l-A+) p n c +  

for large r as Re + 0. Expressions (21)-(23) for x1 give, 

x 1  rG(1 -A*), 

for large r as Re +- 0, so that expression (48) is satisfied when 

Am+l- 1 A * [ ( h +  3)Am+l-(2m+ l)] [Inp,+ 4(m + 1) Am+l - 2(m+ 1) (At- 1)2 

The stream function 9 for the inner velocity field then is 

L -  

$ = sin S(X0 + EX,), 

where xi (i = 0 , l )  are given by (21)-(23) with L,, i&, N, (i = 0 , l )  replacing 
Lo, M,, No and Lo, L, are given by (24) and (49) respectively. 
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6. The drag on the cylinder 
When the drag on the cylinder is denoted by D, the drag coefficient C,, defined 

where the integral is evaluated at r = 1. 
The pressure p is calculated by integrating the momentum equation (2) now 

that the temperature T and the stream function + for the inner velocity field 
are known. It is found that 

(2m+ '''1 + 0 ( e 2 ) )  . (50) 

Expression (50) for C, reduces to the equivalent expressions for C, given by 
Hodnett (1968) for the limiting cases (i) m = 0 and (ii) (Am+l- 1) = O ( E )  and to 
the incompressible result for the drag coefficient on an unheated cylinder given 
in Lamb (1945, p. 616) on putting rn = 0 and letting A + 1 in expression (50). 

(Am+l - 1) A3[(4m + 3) Am+l - - 
8(m + 1)2 (A*- 1) Am+l 

7. Discussion of results 
The zero-order solution, $o, for the Stokes region stream function is not singular 

at  the outer edge of the Stokes region in distinct contrast with the corresponding 
Ilr, for the unheated cylinder problem which needs to be multiplied by E to ensure 
proper behaviour of the velocity field at  the outer edge of the Stokes region. This 
interesting property of the Stokes region stream function for the heated cylinder 
was also exhibited by the stream function, $o, given in Hodnett (1968) which was 
however calculated on the assumption that the viscosity and thermal con- 
ductivity of the gas are constant but the density is allowed its proper variation. 
That the Stokes region stream function satisfies the outside boundary condition 
is then directly attributable to the density variation of the gas. Physically this 
can be explained by the fact that heating the cylinder decreases the gas density 
near the cylinder and in order to conserve mass the speed of the gas at a point 
at given distance from the heated cylinder is greater than the speed of the gas 
a t  the same point when flowing around an unheated cylinder. 

The effect of heating the cylinder is to increase the drag significantly. This can 
be seen by comparing the drag coefficient, CD, for a heated and unheated cylinder. 
For the unheated cylinder, to zero order, the drag coefficient CDIinc = 4m/Re, 
(as Re --f 0), from Lamb (1945). For the heated cylinder, to zero order, the drag 
coefficient 

2 7 ~ ~  Am+l-l 
(as Re .+ 0 ) ,  from (50). CDIcomp = R, (m+ 1) (A*- 1 ) '  
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For the case m = 1 (i.e. viscosity, thermal conductivity aT), 

Thus, when the temperature at  the cylinder is twice the temperature at  infinity, 
the drag on the heated cylinder is almost twice the drag on a similar unheated 
cylinder. 

The conditions under which the solution for the velocity field (when the heating 
factor is order one) given in Hodnett (1968) is not adequate are clearly seen by 
comparing CD evaluated when m = 0 with CDIcomp. When m = 0, from (50) ,  the 
drag coefficient (to zero order) is 

(as Re +- 0). 

Thus if the physical conditions of the problem are such that m = 1 describes the 
variation of the gas properties it is seen that the velocity field given in Hodnett 
(1968) is then quite inadequate and the velocity field given here must be used. 
Of course, if the gas property variation can be adequately described by m M 0 
then the velocity field (when the heating factor is order one) given in Hodnett 
(1968) is sufficient. 
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